A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries†
نویسندگان
چکیده
In this paper, we report a successful synthesis of porous ZnCo2O4 nanoflakes by a morphologyconserved and pyrolysis-induced transformation of novel hexagonally shaped, highly ordered, and inorganic–organic–inorganic layered hybrid nanodisks. It is shown that the hexagonal hybrid nanodisks are constructed from organic molecule (ethylene glycol)-directed assembly of inorganic bilayers. The assembly mechanism has been established by a number of structural and spectroscopic techniques. The porous ZnCo2O4 nanoflakes have also been tested as a lithium ion battery electrode, showing high capacity and high cyclability.
منابع مشابه
Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملFirst-Principles Studies on the Structural Stability of Spinel ZnCo2O4 as an Electrode Material for Lithium-ion Batteries
Systematic first principles calculations were performed for ZnCo2O4 to clarify its structural and electronic properties, and particularly the structural stability as an electrode material for lithium-ion batteries. For samples with low Li concentration, e.g., LinZnCo2O4 with n < 1, Li atoms take the center of oxygen octahedra and may diffuse rapidly. Structure distortions and volume expansions ...
متن کاملMicrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode
This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...
متن کاملGraphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries
LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 sp...
متن کامل